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Abstract
In this paper, the subcritical, near-critical and supercritical asymptotic
behaviour of a reversible Markov process as a chemical model for
polymerization was studied. We establish the existence of three distinct stages
(subcritical, near-critical and supercritical stages) of polymerization (in the
thermodynamic limit as N → +∞), depending on the value of strength of the
fragmentation reaction. These three stages correspond to the size of the largest
length of polymers of size N to be itself of order log N,Na (1/2 < a < 1)

and N, respectively. Especially, a = 2
2σ+1 when the coagulation (reaction) rate

constant Rij of the polymers satisfies Rij = iσ jσ with 1/2 < σ < 3/2.

PACS numbers: 82.35.Jk, 02.50.Ga, 82.70.Gg

1. Introduction

A necessary and sufficient condition for the occurrence of a gelation in a reversible Markov
process as a chemical model of reversible polymerization has been given in [12]. In this paper
we continue to study the asymptotic behaviour of the reversible Markov process.

The process considered in the paper is a continuous-time reversible Markov chain
{MN(t) : t � 0} with the state space

�N =
{

n ∈ NN :
N∑

k=1

knk = N

}
. (1)

The kth component of the state vector n represents the number of k-mers. The only allowed
transitions from n are to states of the form

n+
ik =

{
(n1, n2, . . . , ni − 1, . . . , nk − 1, . . . , ni+k + 1, . . . , nN) if i �= k

(n1, n2, . . . , ni − 2, . . . , n2i + 1, . . . , . . . , nN) if i = k

n−
ik =

{
(n1, n2, . . . , ni + 1, . . . , nk + 1, . . . , ni+k − 1, . . . , nN) if i �= k

(n1, n2, . . . , ni + 2, . . . , n2i − 1, . . . , . . . , nN) if i = k
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and they occur with rate

Qn n′ =




1
N2 Rijninj if n′ = n+

ij i �= j

1
N2 Rjjnj (nj − 1) if n′ = n+

ij i = j

1
N

Fijni+j if n′ = n−
ij

0 other n′ �= n

where the coagulation rate constants Rij and fragmentation rate constants Fij satisfy the
following detailed balance condition proposed by Van Dongen and Ernst [25]

λFijf (i + j) = Rijf (i)f (j) i, j � 1 (2)

where f (k) denotes the number of distinct ways of forming a k-mers from k non-
distinguishable units with distinguishable functional groups and 1/λ (λ > 0) represents the
fragmentation strength which, as in [25], can be written as 1/λ = exp(E/KT ), where E
is the Gibbs free energy of a single chemical bond, T is the absolute temperature and K is
Boltzmann’s constant. Note that we use 1/λ here instead of λ used by Van Dongen and Ernst
in [25] since it is used to call λ > λc (λc is a critical value for the occurrence of gelation) as
the supercritical stage. Formula (2) and its meaning can also be found in [25]. The choice
of Qn n′ reflects the fact that in the homogeneous system (ignoring diffusion effects), reaction
occurs with a probability proportional to the number of reactants and inversely proportional
to the volume; here the density is taken to be equal to one, so that the volume coincides with
the total number of units N.

When Fij = 0, the above irreversible random polymerization model was proposed first
by Marcus [18] and studied in detail by Lushnikov [17] and Buffet and Pulé [4, 5], which
is the stochastic counterpart of Smoluchlovski’s coagulation equations, namely the Marcus–
Lushnikov coagulation model or process. For readers who are interested in the mathematical
aspects of the model, we recommend the survey paper of Aldous [1]. As clusters are growing
in size, break-up processes become more important, and the irreversible coagulation reaction
should be replaced by coagulation–fragmentation reaction. Van Dongen and Ernst [24, 25]
and Spouge [22] were the first ones to extend Smoluchlovski’s coagulation equations by
including the fragmentation reaction. Motivated by the work done by Van Dongen and Ernst
[24, 25], Buffet and Pulé [4, 5] and Pittel et al [20, 21], we considered in [13] a reversible
random polymerization process (reversible Marcus–Lushnikov process) which is a reversible
Markov process with the transition rates Qn n′ with Fij > 0 satisfying the detailed balance
condition (2). In recent years various aspects of Smoluchlovski’s equations and its stochastic
counterpart containing the combined effects of coagulation and fragmentation have been
extensively studied by many authors (see [2, 6–9, 11–13, 15, 16]).

Although there are many studies devoted to the deterministic and stochastic models
based on the coagulation–fragmentation reaction of polymerization, the asymptotic probability
distributions of the size of the largest length of the models have received minimal attention.
The research work with respect to this problem can be found in the papers by Pittel et al
[20, 21].

The objective of this paper is to further study the thermodynamic limit distribution of the
size of polymerization of our model depending on the fragmentation strength. To explain the
meaning of the limit distribution we present some notation and results in the following. From
lemmas 1 and 2 of [13] it follows that the process MN(t) has a unique stationary distribution

PN(n) = 1

πN

N∏
k=1

[(
N

λ

)
f (k)

]nk
/

nk! n ∈ �N (3)
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where

πN = πN

(
N

λ

)
=
∑
n∈�N

∏
k�1

[
N
λ
f (k)

]nk

nk!
(4)

is usually called the partition function of the process. The generating function of the partition
functions {πN(y)} is given by

∞∑
N=0

πN(y)xN = exp{yF(x)} |x| � r (5)

for any fixed y, where π0(y) = 1 and

F(x) =
∞∑

k=1

f (k)xk

has a positive radius, r, of convergence. Furthermore, the partition function has an integral
formula

πN(y) = 1

2π i

∫
�

exp {yF(x) − N log x} x−1 dx

where � denotes a contour surrounding the origin x = 0. In particular,

πN = πN

(
N

λ

)
= 1

2π i

∫
�

exp

{
N

λ
F(x) − N log x

}
x−1 dx.

Technically, the present paper studies the asymptotic behaviour of the stationary
distribution PN(n) in the thermodynamic limit as N → ∞. We shall prove that there
exists a critical value λc of the fragmentation strength λ such that the size of the largest length
of polymers is of order log N,Na

(
1
2 < a < 1

)
, or N, respectively, depending upon whether

λ is below λc, nearly (or equal to) λc, or above λc as N → ∞, where a = 1/(β − 1) and
β (2 < β < 3) is an exponent of f (k) in (6).

In section 2 we present the main results on the limit distribution of the kth largest length
of polymers in the subcritical, near-critical and supercritical stages and explain the relation of
our results to the works done by Pittel et al in [20, 21]. The proofs of two theorems are given
in section 3. An application of the theorems is shown in section 4.

It should be noted that though the process considered in the paper is different from that
studied by Pittel et al in [20, 21] and some more general results are obtained in our model,
Pittel, Woyczyniski and Mann’s work provides us with some good ideas and techniques.

2. The main theorems

By theorem 2 of [12] we know that if the positive number f (k) in (2) is of the form
f (k) = (1 + o(1))cr−kk−β , where r is the positive radius of convergence, c and β are two
positive constants, then a necessary and sufficient condition for the occurrence of a gelation
in the process is that the number β satisfies 2 < β < 3. So, we shall assume in the following
that the positive number f (k) in (2) satisfies

f (k) = (1 + o(1))cr−kk−β (6)

where 2 < β < 3. The number β is usually called an exponent of f (k).
It follows from (6) that

F ′(r) = lim
x→r−0

F ′(x) < +∞ F ′′(r) = lim
x→r−0

F ′′(x) = +∞.
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According to theorem 2 of [12] a critical value of the fragmentation strength λ for the
occurrence of a gelation can be determined as follows:

λc = rF ′(r).

It can be checked that the number f (k) for many models, such as RAa (a � 3), RA∞, AaRBb

(min(a, b) � 2), AaRB∞ (a � 2), etc, satisfies (6), where a and b are two natural numbers
(see [13, 26]).

In order to compare the different results corresponding to different domains of λ, let us
first recall the main subcritical result, then mention the near-critical and supercritical results.

Let L
(k)
N denote the size of kth largest length of polymers and assume that the positive

numbers f (k) satisfy (2) and (6) in the following three theorems. We recall first the subcritical
result which has been proved in [13]:

Theorem 1. If λ < λc, then the size of the largest length of polymers in n (keeping in mind
that n = n(N)) is asymptotically (in probability) a logarithmic function of N, i.e.,

L
(1)
N = R−1[log N − β log log N + Op(1)]

where R = log(r/r), r is the positive root of λ = xF ′(x), x ∈ (0, r), i.e., λ = rF ′(r), and
Op(1) denotes random variables bounded in probability.

Now we mention the main results of this paper.

Theorem 2. Suppose that λ = λc or more general, λ = λN satisfies

λc/λN = 1 − a(dλ)
1

β−1 N
− (β−2)

(β−1)

where a ∈ (−∞, +∞) is fixed and

dλ = c

λ(β − 1)(β − 2)(3 − β)
.

Then, for every x > 0 and k � 1,

lim
N→∞

P
(
L

(k)
N � x(dλN)

1
β−1
) = e−I (x)

∑
0�j�k−1

[I (x)]j /j !

where

I (x) = (β − 1)(β − 2)(3 − β)

p(a)

∫ +∞

x

y−βp(a − y) dy

and p(a) = p(a;β − 1, δ) is the density of a (β − 1)-stable distribution.

Theorem 3. Suppose that λ > λc. Then

(i) The distribution of L
(1)
N satisfies a local limit-type relation

P
(
L

(1)
N = j

) = (1 + o(1))p(xj )�xj

where

xj := [N(1 − λc/λ) − j ](dλN)
− 1

β−1 �xj := B(dλN)
− 1

β−1

and

B = (3 − β)�(3 − β)

and �(.) is the Gamma function. That is, in the distribution,[
N(1 − λc/λ) − L

(1)
N

]
(dλN)

− 1
β−1 �⇒ X (N → +∞)

where the random variable X has the characteristic function

E(exp(itX)) = exp
{−|t |β−1e−i (β−3)π

2 sign(t)
}
.
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(ii) For every fixed x > 0 and k � 2,

lim
N→∞

P
(
L

(k)
N � xN

1
β−1

)
= e−J (x)

∑
0�j�k−2

[J (x)]j /j !

where J (x) = c
λ(β−1)

x−(β−1).

Remark 1. By theorems 1–3 we see that the size of the largest length of polymers is of order

log N − β log log N,N
1

β−1 , or N, respectively, depending upon whether λ is below λc, nearly
(or equal to) λc, or above λc as N → ∞.

Note that there is no other restrictive condition on the coagulation rate constants Rij

and fragmentation rate constants Fij in the three theorems except for the detailed balance
condition. In order to show the relation between the exponent β and Rij and Fij , a form of
Rij and Fij will be given in the following.

To model surface interactions, the coagulation and fragmentation coefficients can be taken
as

Rij = iσ jσ (7)

and ∑
i+j=k

Fij = 2

λ
(k − 1)σ (8)

where σ � 0. Note that the number kσ − 1 proposed by van Dongen and Ernst in [25] is
replaced by (k − 1)σ here. It follows from proposition 1 in [12] that a necessary and sufficient
condition for the occurrence of a gelation is

1
2 < σ < 3

2 (9)

and
∞∑

k=1

k1+σ f (k)rk = ∞. (10)

Moreover, the positive number f (k) has the following form

f (k) = (1 + o(1))cr−kk−(3/2+σ)

if (7), (8), (9) and (10) are given. In this case, 2 < β = (3/2 + σ) < 3 and
1/(β − 1) = 2/(2σ + 1). Thus, we have the following corollary.

Corollary 1. Let Rij , Fij and f (k) satisfy (7), (8), (9) and (10) respectively. Then there exists
a critical value λc such that λc = rF ′(r) < ∞ and the size of the largest length of polymers
is of order log N − (3/2 + σ) log log N,N

2
2σ+1 , or N, respectively, depending upon whether λ

is below λc, nearly (or equal to) λc, or above λc as N → ∞.

The model studied by Pittel, Woyczyniski and Mann is a Whittle-type random graph
process of polymerization [20, 21] which is rather different from the reversible Marcus–
Lushnikov process. They have proved in [21] that the size of the largest component is of
the order log N − 5

2 log log N,N2/3 and N, respectively, in the subcritical, near-critical and
supercritical stages. This result is just the special case of corollary 1 for σ = 1, i.e. Rij = ij .
In fact, the gelation in the case Rij = ij is known to be equivalent to the emergence of a giant
component in the random graph theory, a result which was initiated by Erdös and Rényi [10] and
extensively studied by Bollobás [3], Pittel [19] and Janson et al [14]. Thus, it is the reversible
Marcus–Lushnikov process including the surface interactions (Rij = iσ jσ , 1/2 < σ < 3/2)

of the polymers that we can obtain more general results.
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3. Proofs of the theorems

The key to proving theorems 2 and 3 is to obtain the asymptotic formulae of the partition
function πN in (4).

Let λN > 0, F
(N)
ij > 0 depend on N such that

λNF
(N)
ij f (i + j) = Rijf (i)f (j) 2 � i + j � N. (11)

If λN = λ is independent of N, then F
(N)
ij is also, and (11) becomes (2).

Lemma 1. Let Nk be the random number of k-mers and E(.) denote the expectation
corresponding to the stationary distribution PN(.) in (3). Then

(i) For every fixed k > 0 and λ = λc or more general, λ = λN satisfying

λc/λN = 1 − aN(dλ)
1

β−1 N
− (β−2)

(β−1)

we have

E(Nk) = (1 + o(1))cλ−1k−βNp
(
aN − k(dλN)

− 1
β−1
)/

p(aN)

where aN is uniformly bounded to N.
(ii) For k < lN and λ > λc,

E(Nk) = (1 + o(1))cλ−1bβ[k(b − k/N)]−βN.

(iii) For lN < k < LN and λ > λc,

E(Nk) = (1 + o(1))Bbβ(k/N)−β(dλN)
− 1

β−1 p(xN,k).

(iv) For k > LN and λ > λc,

E(Nk) = (1 + o(1))cλ−1bβ[k(k/N − b)]−βN

where xN,k = (b − k/N)(dλ)
− 1

β−1 N
(β−2)

(β−1) , b = 1 − λc

λ
, lN = bN − ω(N)N1/(β−1), LN =

bN + ω(N)N1/(β−1) and ω(N) → +∞ however slowly.

Proof of lemma 1. It follows from (3), (4) and (6) that

E(Nk) =
∑
n∈�N

nkPN(n)

= Nf (k)]

λπN

∑
n∈�N

[
N
λ
f (k)

]nk−1

(nk − 1)!

N∏
j �=k

[
N
λ
f (j)

]nj

nj !

= Nf (k)

λπN

∑
n∈�N−k

N−k∏
j=1

[
N
λ
f (j)

]nj

nj !

= Nf (k)

λ

πN−k

(
N
λ

)
πN

(
N
λ

) = (1 + o(1))c
N

λ
r−kk−β

πN−k

(
N
λ

)
πN

(
N
λ

) . (12)

Note that the numbers, πN

(
N
λ

)
and πN−k

(
N
λ

)
, have been estimated in the proof of theorem 2

of [12]. That is
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(I) If λ = λc, or more generally, λ = λN satisfies λc/λN = 1 − aN(dλ)
1

β−1 N
− (β−2)

(β−1) , where aN

is uniformly bounded to N, then

πN

(
N

λ

)
= (1 + o(1))DN(r)p(aN)(dλN)

− 1
β−1

and, for every k > 0,

πN−k

(
N

λ

)
= (1 + o(1))(r)kDN(r)p

(
aN − k(dλN)

− 1
β−1
)
(dλN)

− 1
β−1

where DN(r) = exp
{

N
λ
F (r) − N log r

}
.

(II) If λ > λc, then

πN

(
N

λ

)
= (1 + o(1))dλ

(
1 − λc

λ

)−β

DN(r)p

(
0; 1

β − 1
, 2 − 3

β − 1

)
N−(β−1) (13)

and

πN−k

(
N

λ

)
= (1 + o(1))dλ(r)

k(b − k/N)−βDN(r)p

(
0; 1

β − 1
, 2 − 3

β − 1

)
N−(β−1)

for k < lN ,

πN−k

(
N

λ

)
= (1 + o(1))(r)kDN(r)p(xN,k)(dλN)

− 1
β−1

for lN < k < LN , and

πN−k

(
N

λ

)
= (1 + o(1))dλ(r)

k(k/N − b)−βDN(r)

×p

(
0; 1

β − 1
,−

(
2 − 3

β − 1

))
N−(β−1)

for k > LN . Note that �(s + 1) = s�(s), �(s)�(1 − s) = π/ sin(sπ) for 0 < s < 1,

p(x;β − 1, δ) = p(−x;β − 1,−δ) and

p

(
0; 1

β − 1
, 2 − 3

β − 1

)
= π−1�(β) sin[(β − 2)π ]

(see [23]). Thus, by (6), (12), (I) and (II), we can immediately obtain (i), (ii), (iii) and
(iv) of lemma 1. �

Proof of theorem 2. We first prove that L
(1)
N

/
N

1
β−1 is bounded in probability. That is we

will prove that there is no polymer of size k � kN = ω(N)(dλN)
1

β−1 , where ω(N) → +∞
however slowly. By (i) of lemma 1 we have

E


∑

k�kN

Nk


 =

∑
k�kN

E(Nk)

= O


∑

k�kN

(
k

N
1

β−1

)−β

p
(
aN − k(dλN)

− 1
β−1
) 1

N
1

β−1




= O


∫ (dλ)

− 1
β−1 N

β−2
β−1

ω(N)

x−βp(aN − x) dx




= O
(
(ω(N))−(β−1)

) = o(1).
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For y > x we set k1 = x(dλN)
1

β−1 , k2 = y(dλN)
1

β−1 , CN(x, y) = ∑k2
k=k1

Nk and

I (x, y) = (β − 1)(β − 2)(3 − β)

p(a)

∫ y

x

u−βp(a − u) du.

Let aN → a as N → ∞. It follows from (i) of lemma 1 that

E(CN(x, y)) = (1 + o(1))
(β − 1)(β − 2)(3 − β)

p(aN)

∑
k1�k�k2

(
k

(dλN)
1

β−1

)−β

×p
(
aN − k(dλN)

− 1
β−1

) 1

(dλN)
1

β−1

= (1 + o(1))
(β − 1)(β − 2)(3 − β)

p(aN)

∫ y

x

u−βp(aN − u) du

→ I (x, y)

as N → ∞. Furthermore,

E(CN(x, y)(CN(x, y) − 1)) =
∑

k1�k�k2

∑
k1�l�k2

N2f (k)f (l)

λ2

πN−k−l

(
N
λ

)
πN

(
N
λ

)
= (1 + o(1))

∑
k1�k�k2

∑
k1�l�k2

(
cN

λ

)2

(kl)−βp
(
aN − (k + l)(dλN)

− 1
β−1
)/

p(aN)

= (1 + o(1))
[(β − 1)(β − 2)(3 − β)]2

p(aN)2

×
∫ y

x

∫ y

x

u−βv−βp(aN)p(aN − u − v) du dv

→ [I (x, y)]2

as N → ∞. By the same method we have, for every k � 1,

E([CN(x, y)]k) → [I (x, y)]k

as N → ∞, where [CN(x, y)]k = CN(x, y)(CN(x, y) − 1)(CN(x, y) − 2) . . . (CN(x, y) −
k + 1) is the total number of ordered k-tuples of different polymers of size j ∈ [k1, k2].
Hence, CN(x, y) is, in the limit, a Poisson distribution with parameter I (x, y). Since

L
(1)
N

/
N

1
β−1 = Op(1), it follows that, for every x > 0 k � 1 and large x1,

P
(
L

(k)
N � x(dλN)

1
β−1
)

= P
(
x(dλN)

1
β−1 � L

(k)
N � L

(1)
N � x1(dλN)

1
β−1
)

+ O
(
P
(
L

(1)
N > x1(dλN)

1
β−1
))

= P(CN(x, y) � k) + O
(
P(L

(1)
N > x1

(
dλN)

1
β−1
)) → e−I (x)

∑
j�k

[I (x)]j /j !

as x1 → ∞ and N → ∞, where I (x) = limy→∞ I (x, y). This completes the proof of
theorem 2. �

Proof of theorem 3. (i) By (iii) of lemma 1 we have

E(Nj ) = (1 + o(1))Bbβ(j/N)−β(dλN)
− 1

β−1 p(xN,j )

= (1 + o(1))p(xj )�xj (14)
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where j = N(1 − λc/λ) − xj (dλN)
1

β−1 and �xj = B(dλN)
− 1

β−1 . Set CN(j) = ∑
i�j Ni .

Then

E(Nj ) = P(Nj = 1) +
∑
k�2

kP (Nj = k) = P(Nj = 1) + O[NP(CN(j) � 2)]

and

P(Nj = 1) = P
(
Nj = 1, L

(1)
N = j

)
+ P

(
Nj = 1, L

(1)
N > j

)
= P

(
L

(1)
N = j

)− P
(
Nj � 2, L

(1)
N = j

)
+ P

(
Nj = 1, L

(1)
N > j

)
= P

(
L

(1)
N = j

)
+ O[P(CN(j) � 2)].

Therefore

P
(
L

(1)
N = j

) = E(Nj ) + O[NP(CN(j) � 2)]. (15)

Furthermore, for j1, j2 � j ,

N ′ = N − (j1 + j2) = N(2λc/λ − 1) + O
(
N

1
β−1
)
.

If λc/λ < 1/2, then N ′ < 0. This means that P(CN(j) � 2) = 0. Let λc/λ � 1/2 and
λN ′ = λN ′/N , we have

λN ′ � 2λc − λ + o(1) � λc − (λ − λc)/2 < λc.

Let r ′ ∈ (0, r) satisfying λN ′ = r ′F ′(r ′). It follows from (5) that

πN ′

(
N

λ

)
� exp

{
N

λ
F(x) − N ′ log x

}
for any x > 0. So,

πN ′

(
N

λ

)
� exp

{
N

λ
F(r ′) − N ′ log r ′

}
. (16)

Thus, by (6), (13) and (16), we have

P(CN(j) � 2) � E([CN(j)]2)

=
∑

j1,j2�j

(
N

λ

)2

f (j1)f (j2)
πN−(j1+j2)

(
N
λ

)
)

πN

(
N
λ

)

� O


 ∑

j1,j2�j

(j1j2)
−βNβ+1 exp

{
N

λ
(F(r ′) − F(r)) − N ′(log r ′ − log r)

}
= O

(
N3−β exp

{
N

λ
(F(r ′) − F(r)) − N ′(log r ′ − log r)

})
.

Since
N

λ
(F(r ′) − F(r)) − N ′(log r ′ − log r)

= N

λ

[
−
∫ r

r ′
xF ′(x)x−1 dx + r ′F ′(r ′)

∫ r

r ′
x−1 dx

]

= − N

λ

∫ r

r ′
[xF ′(x) − r ′F ′(r ′)]x−1 dx

= − N

λ
c′
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where c′ > 0, it follows that

NP(CN(j) � 2) � O

(
N4−β exp

{
−N

λ
c′
})

= o
(
N

− 1
β−1
)
.

Hence, by (14) and (15),

P
(
L

(1)
N = j

) = E(Nj ) + o
(
N

− 1
β−1

)
= (1 + o(1))p(xj )�xj .

This completes the proof of (i).

(ii) We first prove that there is at most one polymer of size j � jN = ω(N)N
1

β−1 ,
where ω(N) → +∞ however slowly. For any 0 < ε < b = 1 − λc

λ
and ε + b � 1, let

lN (ε) = bN − εN . It follows from (ii) of lemma 1 that

E


 ∑

jN�j�lN (ε)

Nj


 = (1 + o(1))

∑
jN �j�lN (ε)

cλ−1bβ [j (b − j/N)]−βN

= O

(
N−(β−2)

∫ b−ε

jN/N

x−β(b − x)−β dx

)
= O((ω(N))−(β−1)) → 0

as N → ∞. Therefore, there is no polymer in the ranges from jN to lN (ε). We now consider
the range from lN (ε) to N. Suppose that there are two polymers j1 and j2 of size between lN (ε)

and N. If λc

λ
< 1/2, then

N − (j1 + j2) � N − 2lN (ε) = N

(
2
λc

λ
− 1 + 2ε

)
< 0

for all small enough ε > 0. This means that there is at most one polymer of size between
lN (ε) and N for λc

λ
< 1/2. Let λc

λ
� 1/2. Then, taking ε < b/2 we have

0 � N ′ = N − (j1 + j2) � N − 2lN (ε) = N

(
2
λc

λ
− 1 + 2ε

)
and

λN ′ � λ

(
2
λc

λ
− 1 + 2ε

)
< λc

where λN ′ = λN ′/N . So, as in the proof of (i),

E


 ∑

lN (ε)�j1,j2�N

Nj


 � E([CN(lN(ε))]2) � O

(
N3−β exp

{
−N

λ
c′′
})

→ 0

as N → ∞, where c′′ > 0. Thus, we have proved that there is at most one polymer of size

j � ω(N)N
1

β−1 as N → ∞. Therefore, for each ε > 0, there exists x1 = x1(ε) > x so large
that

lim supP
(
L

(2)
N > x1N

1
β−1
)

< ε.

Note that, for every k � 2,

P
(
L

(k)
N � xN

1
β−1
) = P

(
xN

1
β−1 � L

(k)
N � L

(2)
N � x1N

1
β−1
)

+ O
(
P
(
L

(2)
N > x1N

1
β−1
))

= P(CN(x, x1) � k − 1) + O
(
P
(
L

(2)
N > x1N

1
β−1
))
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where CN(x, x1) = ∑
j1�j�j2

Nj, j1 = xN
1

β−1 and j2 = x1N
1

β−1 . So, as in the proof of
theorem 2, CN(x, x1) is, in the limit, a Poisson distribution with parameter

J (x, x1) = c

λ(β − 1)

[
x−(β−1) − x

−(β−1)

1

]
.

Thus

lim
N→∞

sup

∣∣∣∣∣∣P
(
L

(k)
N > xN

1
β−1
)− e−J (x,x1)

∑
j�k−1

[J (x, x1)]
j /j !

∣∣∣∣∣∣ � ε

and, letting ε → 0, i.e. x1(ε) → +∞, we have

lim
N→∞

P
(
L

(k)
N � xN

1
β−1
) = e−J (x)

∑
0�j�k−2

[J (x)]j /j !

for every x > 0 and k � 2, where limx1→+∞ J (x, x1) = J (x) = c
λ(β−1)

x−(β−1). This
completes the proof. �

4. Applications

As an application of theorems 1–3, we show two examples.

Example 1. RAa model (a � 3).

It is known that the numbers f (k) for the RAa model are as follows:

f (k) = ak[(a − 1)k]!

k![(a − 2)k + 2]!
.

By using Stirling’s formula we have (see [13])

f (k) = (1 + o(1))cr−kk−5/2

where c =
√

(a − 1)/[2π(a − 2)5], β = 5/2

r = lim
k→∞

f (k)

f (k + 1)
= (a − 2)(a−2)

a(a − 1)(a−1)

and λc = rF ′(r) = (a − 1)/[a(a − 2)2]. Taking the fragmentation coefficients F(i, j) such
that

Fij = 1

λ

Rijf (i)f (j)

f (i + j)
i, j � 1

it follows from theorems 1–3 that the size of the largest length of polymers is of order
log N − 5

2 log log N,N2/3 or N, respectively, depending upon whether λ is below λc, nearly
(or equal to) λc, or above λc as N → ∞.

Example 2. For the model RA∞ we have

f (k) = kk−2

k!
.

It can be calculated that

f (k) = (1 + o(1))cr−kk−5/2

where c = (2π)−1/2 and r = e−1. Therefore, the size of the largest length of polymers is of
order log N − 5

2 log log N,N2/3 and N, respectively, in the subcritical, near-critical and the
supercritical cases.
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